An open source system for automating deployment, scaling, and operations of applications.

Thursday, December 7, 2017

Using eBPF in Kubernetes


Kubernetes provides a high-level API and a set of components that hides almost all of the intricate and—to some of us—interesting details of what happens at the systems level. Application developers are not required to have knowledge of the machines' IP tables, cgroups, namespaces, seccomp, or, nowadays, even the container runtime that their application runs on top of. But underneath, Kubernetes and the technologies upon which it relies (for example, the container runtime) heavily leverage core Linux functionalities.

This article focuses on a core Linux functionality increasingly used in networking, security and auditing, and tracing and monitoring tools. This functionality is called extended Berkeley Packet Filter (eBPF)

Note: In this article we use both acronyms: eBPF and BPF. The former is used for the extended BPF functionality, and the latter for "classic" BPF functionality. 

What is BPF?

BPF is a mini-VM residing in the Linux kernel that runs BPF programs. Before running, BPF programs are loaded with the bpf() syscall and are validated for safety: checking for loops, code size, etc. BPF programs are attached to kernel objects and executed when events happen on those objects—for example, when a network interface emits a packet.

BPF Superpowers

BPF programs are event-driven by definition, an incredibly powerful concept, and executes code in the kernel when an event occurs. Netflix's Brendan Gregg refers to BPF as a Linux superpower.

The 'e' in eBPF

Traditionally, BPF could only be attached to sockets for socket filtering. BPF’s first use case was in `tcpdump`. When you run `tcpdump` the filter is compiled into a BPF program and attached to a raw `AF_PACKET` socket in order to print out filtered packets.

But over the years, eBPF added the ability to attach to other kernel objects. In addition to socket filtering, some supported attach points are:
  • Kprobes (and userspace equivalents uprobes)
  • Tracepoints
  • Network schedulers or qdiscs for classification or action (tc)
  • XDP (eXpress Data Path)
This and other, newer features like in-kernel helper functions and shared data-structures (maps) that can be used to communicate with user space, extend BPF’s capabilities.

Existing Use Cases of eBPF with Kubernetes

Several open-source Kubernetes tools already use eBPF and many use cases warrant a closer look, especially in areas such as networking, monitoring and security tools.

Dynamic Network Control and Visibility with Cilium

Cilium is a networking project that makes heavy use of eBPF superpowers to route and filter network traffic for container-based systems. By using eBPF, Cilium can dynamically generate and apply rules—even at the device level with XDP—without making changes to the Linux kernel itself.

The Cilium Agent runs on each host. Instead of managing IP tables, it translates network policy definitions to BPF programs that are loaded into the kernel and attached to a container's virtual ethernet device. These programs are executed—rules applied—on each packet that is sent or received.

This diagram shows how the Cilium project works:

Depending on what network rules are applied, BPF programs may be attached with tc or XDP. By using XDP, Cilium can attach the BPF programs at the lowest possible point, which is also the most performant point in the networking software stack.

If you'd like to learn more about how Cilium uses eBPF, take a look at the project's BPF and XDP reference guide.

Tracking TCP Connections in Weave Scope

Weave Scope is a tool for monitoring, visualizing and interacting with container-based systems. For our purposes, we'll focus on how Weave Scope gets the TCP connections.

Weave Scope employs an agent that runs on each node of a cluster. The agent monitors the system, generates a report and sends it to the app server. The app server compiles the reports it receives and presents the results in the Weave Scope UI.

To accurately draw connections between containers, the agent attaches a BPF program to kprobes that track socket events: opening and closing connections. The BPF program, tcptracer-bpf, is compiled into an ELF object file and loaded using gopbf.

(As a side note, Weave Scope also has a plugin that make use of eBPF: HTTP statistics.)

To learn more about how this works and why it's done this way, read this extensive post that the Kinvolk team wrote for the Weaveworks Blog. You can also watch a recent talk about the topic.

Limiting syscalls with seccomp-bpf

Linux has more than 300 system calls (read, write, open, close, etc.) available for use—or misuse. Most applications only need a small subset of syscalls to function properly. seccomp is a Linux security facility used to limit the set of syscalls that an application can use, thereby limiting potential misuse.

The original implementation of seccomp was highly restrictive. Once applied, if an application attempted to do anything beyond reading and writing to files it had already opened, seccomp sent a `SIGKILL` signal.

seccomp-bpf enables more complex filters and a wider range of actions. Seccomp-bpf, also known as seccomp mode 2, allows for applying custom filters in the form of BPF programs. When the BPF program is loaded, the filter is applied to each syscall and the appropriate action is taken (Allow, Kill, Trap, etc.).

seccomp-bpf is widely used in Kubernetes tools and exposed in Kubernetes itself. For example, seccomp-bpf is used in Docker to apply custom seccomp security profiles, in rkt to apply seccomp isolators, and in Kubernetes itself in its Security Context.

But in all of these cases the use of BPF is hidden behind libseccomp. Behind the scenes, libseccomp generates BPF code from rules provided to it. Once generated, the BPF program is loaded and the rules applied.

Potential Use Cases for eBPF with Kubernetes

eBPF is a relatively new Linux technology. As such, there are many uses that remain unexplored. eBPF itself is also evolving: new features are being added in eBPF that will enable new use cases that aren’t currently possible. In the following sections, we're going to look at some of these that have only recently become possible and ones on the horizon. Our hope is that these features will be leveraged by open source tooling.

Pod and container level network statistics

BPF socket filtering is nothing new, but BPF socket filtering per cgroup is. Introduced in Linux 4.10, cgroup-bpf allows attaching eBPF programs to cgroups. Once attached, the program is executed for all packets entering or exiting any process in the cgroup.

A cgroup is, amongst other things, a hierarchical grouping of processes. In Kubernetes, this grouping is found at the container level. One idea for making use of cgroup-bpf, is to install BPF programs that collect detailed per-pod and/or per-container network statistics.

Generally, such statistics are collected by periodically checking the relevant file in Linux's `/sys` directory or using Netlink. By using BPF programs attached to cgroups for this, we can get much more detailed statistics: for example, how many packets/bytes on tcp port 443, or how many packets/bytes from IP In general, because BPF programs have a kernel context, they can safely and efficiently deliver more detailed information to user space.

To explore the idea, the Kinvolk team implemented a proof-of-concept: This project attaches a BPF program to each cgroup and exports the information to Prometheus.

There are of course other interesting possibilities, like doing actual packet filtering. But the obstacle currently standing in the way of this is having cgroup v2 support—required by cgroup-bpf—in Docker and Kubernetes.

Application-applied LSM

Linux Security Modules (LSM) implements a generic framework for security policies in the Linux kernel. SELinux and AppArmor are examples of these. Both of these implement rules at a system-global scope, placing the onus on the administrator to configure the security policies.

Landlock is another LSM under development that would co-exist with SELinux and AppArmor. An initial patchset has been submitted to the Linux kernel and is in an early stage of development. The main difference with other LSMs is that Landlock is designed to allow unprivileged applications to build their own sandbox, effectively restricting themselves instead of using a global configuration. With Landlock, an application can load a BPF program and have it executed when the process performs a specific action. For example, when the application opens a file with the open() system call, the kernel will execute the BPF program, and, depending on what the BPF program returns, the action will be accepted or denied.

In some ways, it is similar to seccomp-bpf: using a BPF program, seccomp-bpf allows unprivileged processes to restrict what system calls they can perform. Landlock will be more powerful and provide more flexibility. Consider the following system call:

fd = open(“myfile.txt”, O_RDWR);

The first argument is a “char *”, a pointer to a memory address, such as `0xab004718`.

With seccomp, a BPF program only has access to the parameters of the syscall but cannot dereference the pointers, making it impossible to make security decisions based on a file. seccomp also uses classic BPF, meaning it cannot make use of eBPF maps, the mechanism for interfacing with user space. This restriction means security policies cannot be changed in seccomp-bpf based on a configuration in an eBPF map.

BPF programs with Landlock don’t receive the arguments of the syscalls but a reference to a kernel object. In the example above, this means it will have a reference to the file, so it does not need to dereference a pointer, consider relative paths, or perform chroots.

Use Case: Landlock in Kubernetes-based serverless frameworks

In Kubernetes, the unit of deployment is a pod. Pods and containers are the main unit of isolation. In serverless frameworks, however, the main unit of deployment is a function. Ideally, the unit of deployment equals the unit of isolation. This puts serverless frameworks like Kubeless or OpenFaaS into a predicament: optimize for unit of isolation or deployment?

To achieve the best possible isolation, each function call would have to happen in its own container—ut what's good for isolation is not always good for performance. Inversely, if we run function calls within the same container, we increase the likelihood of collisions.

By using Landlock, we could isolate function calls from each other within the same container, making a temporary file created by one function call inaccessible to the next function call, for example. Integration between Landlock and technologies like Kubernetes-based serverless frameworks would be a ripe area for further exploration.

Auditing kubectl-exec with eBPF

In Kubernetes 1.7 the audit proposal started making its way in. It's currently pre-stable with plans to be stable in the 1.10 release. As the name implies, it allows administrators to log and audit events that take place in a Kubernetes cluster.

While these events log Kubernetes events, they don't currently provide the level of visibility that some may require. For example, while we can see that someone has used `kubectl exec` to enter a container, we are not able to see what commands were executed in that session. With eBPF one can attach a BPF program that would record any commands executed in the `kubectl exec` session and pass those commands to a user-space program that logs those events. We could then play that session back and know the exact sequence of events that took place.

Learn more about eBPF

If you're interested in learning more about eBPF, here are some resources:


We are just starting to see the Linux superpowers of eBPF being put to use in Kubernetes tools and technologies. We will undoubtedly see increased use of eBPF. What we have highlighted here is just a taste of what you might expect in the future. What will be really exciting is seeing how these technologies will be used in ways that we have not yet thought about. Stay tuned!

The Kinvolk team will be hanging out at the Kinvolk booth at KubeCon in Austin. Come by to talk to us about all things, Kubernetes, Linux, container runtimes and yeah, eBPF.

Wednesday, December 6, 2017

PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes

Editor's note: Today's post is a joint post from the deep learning team at Baidu and the etcd team at CoreOS.

PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes

Two open source communities—PaddlePaddle, the deep learning framework originated in Baidu, and Kubernetes®, the most famous containerized application scheduler—are announcing the Elastic Deep Learning (EDL) feature in PaddlePaddle’s new release codenamed Fluid.

Fluid EDL includes a Kubernetes controller, PaddlePaddle auto-scaler, which changes the number of processes of distributed jobs according to the idle hardware resource in the cluster, and a new fault-tolerable architecture as described in the PaddlePaddle design doc.

Industrial deep learning requires significant computation power. Research labs and companies often build GPU clusters managed by SLURM, MPI, or SGE. These clusters either run a submitted job if it requires less than the idle resource, or pend the job for an unpredictably long time. This approach has its drawbacks: in an example with 99 available nodes and a submitted job that requires 100, the job has to wait without using any of the available nodes. Fluid works with Kubernetes to power elastic deep learning jobs, which often lack optimal resources, by helping to expose potential algorithmic problems as early as possible.

Another challenge is that industrial users tend to run deep learning jobs as a subset stage of the complete data pipeline, including the web server and log collector. Such general-purpose clusters require priority-based elastic scheduling. This makes it possible to run more processes in the web server job and less in deep learning during periods of high web traffic, then prioritize deep learning when web traffic is low. Fluid talks to Kubernetes' API server to understand the global picture and orchestrate the number of processes affiliated with various jobs.

In both scenarios, PaddlePaddle jobs are tolerant to a process spikes and decreases. We achieved this by implementing the new design, which introduces a master process in addition to the old PaddlePaddle architecture as described in a previous blog post. In the new design, as long as there are three processes left in a job, it continues. In extreme cases where all processes are killed, the job can be restored and resume.

We tested Fluid EDL for two use cases: 1) the Kubernetes cluster runs only PaddlePaddle jobs; and 2) the cluster runs PaddlePaddle and Nginx jobs.

In the first test, we started up to 20 PaddlePaddle jobs one by one with a 10-second interval. Each job has 60 trainers and 10 parameter server processes, and will last for hours. We repeated the experiment 20 times: 10 with FluidEDL turned off and 10 with FluidEDL turned on. In Figure one, solid lines correspond to the first 10 experiments and dotted lines the rest. In the upper part of the figure, we see that the number of pending jobs increments monotonically without EDL. However, when EDL is turned on, resources are evenly distributed to all jobs. Fluid EDL kills some existing processes to make room for new jobs and jobs coming in at a later point in time. In both cases, the cluster is equally utilized (see lower part of figure).

Figure 1. Fluid EDL evenly distributes resource among jobs.

In the second test, each experiment ran 400 Nginx pods, which has higher priority than the six PaddlePaddle jobs. Initially, each PaddlePaddle job had 15 trainers and 10 parameter servers. We killed 100 Nginx pods every 90 seconds until 100 left, and then we started to increase the number of Nginx jobs by 100 every 90 seconds. The upper part of Figure 2 shows this process. The middle of the diagram shows that Fluid EDL automatically started some PaddlePaddle processes by decreasing Nginx pods, and killed PaddlePaddle processes by increasing Nginx pods later on. As a result, the cluster maintains around 90% utilization as shown in the bottom of the figure. When Fluid EDL was turned off, there were no PaddlePaddle processes autoincrement, and the utilization fluctuated with the varying number of Nginx pods.

Figure 2. Fluid changes PaddlePaddle processes with the change of Nginx processes.

We continue to work on FluidEDL and welcome comments and contributions. Visit the PaddlePaddle repo, where you can find the design doc, a simple tutorial, and experiment details.
  • Xu Yan (Baidu Research)
  • Helin Wang (Baidu Research)
  • Yi Wu (Baidu Research)
  • Xi Chen (Baidu Research)
  • Weibao Gong (Baidu Research)
  • Xiang Li (CoreOS)

- Yi Wang (Baidu Research)

Friday, November 17, 2017

Autoscaling in Kubernetes

Kubernetes allows developers to automatically adjust cluster sizes and the number of pod replicas based on current traffic and load. These adjustments reduce the amount of unused nodes, saving money and resources. In this talk, Marcin Wielgus of Google walks you through the current state of pod and node autoscaling in Kubernetes: .how it works, and how to use it, including best practices for deployments in production applications.

Enjoyed this talk? Join us for more exciting sessions on scaling and automating your Kubernetes clusters at KubeCon in Austin on December 6-8. Register Now >> 

Be sure to check out Automating and Testing Production Ready Kubernetes Clusters in the Public Cloud by Ron Lipke, Senior Developer, Platform as a Service, Gannet/USA Today Network.

Thursday, November 16, 2017

Certified Kubernetes Conformance Program: Launch Celebration Round Up

This week the CNCF certified the first group of KubernetesⓇ offerings under the Certified Kubernetes Conformance Program. These first certifications follow a beta phase during which we invited participants to submit conformance results. The community response was overwhelming: CNCF certified offerings from 32 vendors!

The new Certified Kubernetes Conformance Program gives enterprise organizations the confidence that workloads running on any Certified Kubernetes distribution or platform will work correctly on other Certified Kubernetes distributions or platforms. A Certified Kubernetes product guarantees that the complete Kubernetes API functions as specified, so users can rely on a seamless, stable experience.

Here’s what the world had to say about the Certified Kubernetes Conformance Program.

Press coverage:
Community blog round-up:
Visit for more information about the Certified Kubernetes Conformance Program, and learn how you can join a growing list of Certified Kubernetes providers.

“Cloud Native Computing Foundation”, “CNCF” and “Kubernetes” are registered trademarks of The Linux Foundation in the United States and other countries. “Certified Kubernetes” and the Certified Kubernetes design are trademarks of The Linux Foundation in the United States and other countries.

Wednesday, November 15, 2017

Kubernetes is Still Hard (for Developers)

Kubernetes has made the Ops experience much easier, but how does the developer experience compare? Ops teams can deploy a Kubernetes cluster in a matter of minutes. But developers need to understand a host of new concepts before beginning to work with Kubernetes. This can be a tedious and manual process, but it doesn’t have to be. In this talk, Michelle Noorali, co-lead of SIG-Apps, reimagines the Kubernetes developer experience. She shares her top 3 tips for building a successful developer experience including:
  1. A framework for thinking about cloud native applications
  2. An integrated experience for debugging and fine-tuning cloud native applicationsA way to get a cloud native application out the door quickly
Interested in learning how far the Kubernetes developer experience has come? Join us at KubeCon in Austin on December 6-8. Register Now >>

Check out Michelle’s keynote to learn about exciting new updates from CNCF projects.

Friday, November 3, 2017

Securing Software Supply Chain with Grafeas

Editor's note: This post is written by Kelsey Hightower, Staff Developer Advocate at Google, and Sandra Guo, Product Manager at Google.

Kubernetes has evolved to support increasingly complex classes of applications, enabling the development of two major industry trends: hybrid cloud and microservices. With increasing complexity in production environments, customers—especially enterprises—are demanding better ways to manage their software supply chain with more centralized visibility and control over production deployments.

On October 12th, Google and partners announced Grafeas, an open source initiative to define a best practice for auditing and governing the modern software supply chain. With Grafeas (“scribe” in Greek), developers can plug in components of the CI/CD pipeline into a central source of truth for tracking and enforcing policies. Google is also working on Kritis (“judge” in Greek), allowing devOps teams to enforce deploy-time image policy using metadata and attestations stored in Grafeas.

Grafeas allows build, auditing and compliance tools to exchange comprehensive metadata on container images using a central API. This allows enforcing policies that provide central control over the software supply process.

Example application: PaymentProcessor

Let’s consider a simple application, PaymentProcessor, that retrieves, processes and updates payment info stored in a database. This application is made up of two containers: a standard ruby container and custom logic.

Due to the sensitive nature of the payment data, the developers and DevOps team really want to make sure that the code meets certain security and compliance requirements, with detailed records on the provenance of this code. There are CI/CD stages that validate the quality of the PaymentProcessor release, but there is no easy way to centrally view/manage this information:

Visibility and governance over the PaymentProcessor Code

Grafeas provides an API for customers to centrally manage metadata created by various CI/CD components and enables deploy time policy enforcement through a Kritis implementation.

Let’s consider a basic example of how Grafeas can provide deploy time control for the PaymentProcessor app using a demo verification pipeline.

Assume that a PaymentProcessor container image has been created and pushed to Google Container Registry. This example uses the container for testing. You as the QA engineer want to create an attestation certifying this image for production usage. Instead of trusting an image tag like 0.0.1, which can be reused and point to a different container image later, we can trust the image digest to ensure the attestation links to the full image contents.

1. Set up the environment

Generate a signing key:

gpg --quick-generate-key --yes

Export the image signer's public key:

gpg --armor --export > ${GPG_KEY_ID}.pub

Create the ‘qa’ AttestationAuthority note via the Grafeas API:

curl -X POST \
 "" \
 -d @note.json

Create the Kubernetes ConfigMap for admissions control and store the QA signer's public key:

kubectl create configmap image-signature-webhook \
 --from-file ${GPG_KEY_ID}.pub
kubectl get configmap image-signature-webhook -o yaml

Set up an admissions control webhook to require QA signature during deployment.

kubectl apply -f kubernetes/image-signature-webhook.yaml

2. Attempt to deploy an image without QA attestation

Attempt to run the image in paymentProcessor.ymal before it is QA attested:

kubectl apply -f pods/nginx.yaml
apiVersion: v1
kind: Pod
 name: payment
   - name: payment
     image: ""

Create the paymentProcessor pod:

kubectl apply -f pods/paymentProcessor.yaml

Notice the paymentProcessor pod was not created and the following error was returned:

The  "" is invalid: : No matched signatures for container image:

3. Create an image signature

Assume the image digest is stored in Image-digest.txt, sign the image digest:

gpg -u \
 --armor \
 --clearsign \
 --output=signature.gpg \

4. Upload the signature to the Grafeas API

Generate a pgpSignedAttestation occurrence from the signature :

cat > occurrence.json <<EOF
 "resourceUrl": "$(cat image-digest.txt)",
 "noteName": "projects/image-signing/notes/qa",
 "attestation": {
   "pgpSignedAttestation": {
      "signature": "$(cat signature.gpg)",
      "contentType": "application/vnd.gcr.image.url.v1",
      "pgpKeyId": "${GPG_KEY_ID}"

Upload the attestation through the Grafeas API:

curl -X POST \
 '' \
 -d @occurrence.json

5. Verify QA attestation during a production deployment

Attempt to run the image in paymentProcessor.ymal now that it has the correct attestation in the Grafeas API:

kubectl apply -f pods/paymentProcessor.yaml
pod "PaymentProcessor" created

With the attestation added the pod will be created as the execution criteria are met.

For more detailed information, see this Grafeas tutorial.


The demo above showed how you can integrate your software supply chain with Grafeas and gain visibility and control over your production deployments. However, the demo verification pipeline by itself is not a full Kritis implementation. In addition to basic admission control, Kritis provides additional support for workflow enforcement, multi-authority signing, breakglass deployment and more. You can read the Kritis whitepaper for more details. The team is actively working on a full open-source implementation. We’d love your feedback!

In addition, a hosted alpha implementation of Kritis, called Binary Authorization, is available on Google Container Engine and will be available for broader consumption soon.

Google, JFrog, and other partners joined forces to create Grafeas based on our common experiences building secure, large, and complex microservice deployments for internal and enterprise customers. Grafeas is an industry-wide community effort.

To learn more about Grafeas and contribute to the project:
We hope you join us!
The Grafeas Team

Thursday, November 2, 2017

Containerd Brings More Container Runtime Options for Kubernetes

Editor's note: Today's post is by Lantao Liu, Software Engineer at Google, and Mike Brown, Open Source Developer Advocate at IBM.

A container runtime is software that executes containers and manages container images on a node. Today, the most widely known container runtime is Docker, but there are other container runtimes in the ecosystem, such as rkt, containerd, and lxd. Docker is by far the most common container runtime used in production Kubernetes environments, but Docker’s smaller offspring, containerd, may prove to be a better option. This post describes using containerd with Kubernetes.

Kubernetes 1.5 introduced an internal plugin API named Container Runtime Interface (CRI) to provide easy access to different container runtimes. CRI enables Kubernetes to use a variety of container runtimes without the need to recompile. In theory, Kubernetes could use any container runtime that implements CRI to manage pods, containers and container images.

Over the past 6 months, engineers from Google, Docker, IBM, ZTE, and ZJU have worked to implement CRI for containerd. The project is called cri-containerd, which had its feature complete v1.0.0-alpha.0 release on September 25, 2017. With cri-containerd, users can run Kubernetes clusters using containerd as the underlying runtime without Docker installed.


Containerd is an OCI compliant core container runtime designed to be embedded into larger systems. It provides the minimum set of functionality to execute containers and manages images on a node. It was initiated by Docker Inc. and donated to CNCF in March of 2017. The Docker engine itself is built on top of earlier versions of containerd, and will soon be updated to the newest version. Containerd is close to a feature complete stable release, with 1.0.0-beta.1 available right now.

Containerd has a much smaller scope than Docker, provides a golang client API, and is more focused on being embeddable.The smaller scope results in a smaller codebase that’s easier to maintain and support over time, matching Kubernetes requirements as shown in the following table:

Containerd Scope (In/Out)
Kubernetes Requirement
Container Lifecycle Management
Container Create/Start/Stop/Delete/List/Inspect (✔️)
Image Management
Pull/List/Inspect (✔️)
No concrete network solution. User can setup network namespace and put containers into it.
Kubernetes networking deals with pods, rather than containers, so
container runtimes should not provide complex networking solutions that
don't satisfy requirements. (✔️)

No volume management. User can setup host path, and mount it into container.
Kubernetes manages volumes. Container runtimes should not provide internal volume management that may conflict with Kubernetes. (✔️)
Persistent Container Logging
No persistent container log. Container STDIO is provided as FIFOs, which can be redirected/decorated as is required.
Kubernetes has specific requirements for persistent container logs, such as format and path etc. Container runtimes should not  persist an unmanageable container log. (✔️)
Containerd provides container and snapshot metrics as part of the API.
Kubernetes expects container runtime to provide container metrics (CPU, Memory, writable layer size, etc.) and image filesystem usage (disk, inode usage, etc.). (✔️)

Overall, from a technical perspective, containerd is a very good alternative container runtime for Kubernetes.


Cri-containerd is exactly that: an implementation of CRI for containerd. It operates on the same node as the Kubelet and containerd. Layered between Kubernetes and containerd, cri-containerd handles all CRI service requests from the Kubelet and uses containerd to manage containers and container images. Cri-containerd manages these service requests in part by forming containerd service requests while adding sufficient additional function to support the CRI requirements.

Compared with the current Docker CRI implementation (dockershim), cri-containerd eliminates an extra hop in the stack, making the stack more stable and efficient.


Cri-containerd uses containerd to manage the full container lifecycle and all container images. As also shown below, cri-containerd manages pod networking via CNI (another CNCF project).

Let’s use an example to demonstrate how cri-containerd works for the case when Kubelet creates a single-container pod:
  1. Kubelet calls cri-containerd, via the CRI runtime service API, to create a pod;
  2. cri-containerd uses containerd to create and start a special pause container (the sandbox container) and put that container inside the pod’s cgroups and namespace (steps omitted for brevity);
  3. cri-containerd configures the pod’s network namespace using CNI;
  4. Kubelet subsequently calls cri-containerd, via the CRI image service API, to pull the application container image;
  5. cri-containerd further uses containerd to pull the image if the image is not present on the node;
  6. Kubelet then calls cri-containerd, via the CRI runtime service API, to create and start the application container inside the pod using the pulled container image;
  7. cri-containerd finally calls containerd to create the application container, put it inside the pod’s cgroups and namespace, then to start the pod’s new application container.
After these steps, a pod and its corresponding application container is created and running.


Cri-containerd v1.0.0-alpha.0 was released on Sep. 25, 2017.

It is feature complete. All Kubernetes features are supported.

All CRI validation tests have passed. (A CRI validation is a test framework for validating whether a CRI implementation meets all the requirements expected by Kubernetes.)

All regular node e2e tests have passed. (The Kubernetes test framework for testing Kubernetes node level functionalities such as managing pods, mounting volumes etc.)

To learn more about the v1.0.0-alpha.0 release, see the project repository.

Try it Out

For a multi-node cluster installer and bring up steps using ansible and kubeadm, see this repo link.

For creating a cluster from scratch on Google Cloud, see Kubernetes the Hard Way.

For a custom installation from release tarball, see this repo link.

For a installation with LinuxKit on a local VM, see this repo link.

Next Steps

We are focused on stability and usability improvements as our next steps.

  • Stability:
    • Set up a full set of Kubernetes integration test in the Kubernetes test infrastructure on various OS distros such as Ubuntu, COS (Container-Optimized OS) etc.
    • Actively fix any test failures and other issues reported by users.

  • Usability:
    • Improve the user experience of crictl. Crictl is a portable command line tool for all CRI container runtimes. The goal here is to make it easy to use for debug and development scenarios.
    • Integrate cri-containerd with, to help users bring up a production quality Kubernetes cluster using cri-containerd and containerd.
    • Improve our documentation for users and admins alike.

We plan to release our v1.0.0-beta.0 by the end of 2017.


Cri-containerd is a Kubernetes incubator project located at Any contributions in terms of ideas, issues, and/or fixes are welcome. The getting started guide for developers is a good place to start for contributors.


Cri-containerd is developed and maintained by the Kubernetes SIG-Node community. We’d love to hear feedback from you. To join the community:

Wednesday, November 1, 2017

Kubernetes the Easy Way

Editor's note: Today's post is by Dan Garfield, VP of Marketing at Codefresh, on how to set up and easily deploy a Kubernetes cluster.

Kelsey Hightower wrote an invaluable guide for Kubernetes called Kubernetes the Hard Way. It’s an awesome resource for those looking to understand the ins and outs of Kubernetes—but what if you want to put Kubernetes on easy mode? That’s something we’ve been working on together with Google Cloud. In this guide, we’ll show you how to get a cluster up and running, as well as how to actually deploy your code to that cluster and run it.

This is Kubernetes the easy way. 

What We’ll Accomplish

  1. Set up a cluster
  2. Deploy an application to the cluster
  3. Automate deployment with rolling updates


  • A containerized application
  • A Google Cloud Account or a Kubernetes cluster on another provider
    • Everything after Cluster creation is identical with all providers.
  • A free account on Codefresh
    • Codefresh is a service that handles Kubernetes deployment configuration and automation. 
We made Codefresh free for open-source projects and offer 200 builds/mo free for private projects, to make adopting Kubernetes as easy as possible. Deploy as much as you like on as many clusters as you like. 

Set Up a Cluster

1. Create an account at and log in.

Note: If you’re using a Cluster outside of Google Cloud, you can skip this step.

Google Container Engine is Google Cloud’s managed Kubernetes service. In our testing, it’s both powerful and easy to use.

If you’re new to the platform, you can get a $500 credit at the end of this process.

2. Open the menu and scroll down to Container Engine. Then select Container Clusters.

3. Click Create cluster.

We’re done with step 1. In my experience it usually takes less than 5 minutes for a cluster to be created. 

Deploy an Application to Kubernetes

First go to Codefresh and create an account using Github, Bitbucket, or Gitlab. As mentioned previously, Codefresh is free for both open source and smaller private projects. We’ll use it to create the configuration Yaml necessary to deploy our application to Kubernetes. Then we'll deploy our application and automate the process to happen every time we commit code changes. Here are the steps:
  1. Create a Codefresh account
  2. Connect to Google Cloud (or other cluster)
  3. Add Cluster
  4. Deploy static image
  5. Build and deploy an image
  6. Automate the process

Connect to Google Cloud

To connect your Clusters in Google Container Engine, go to Account Settings > Integrations > Kubernetes and click Authenticate. This prompts you to login with your Google credentials.

Once you log in, all of your clusters are available within Codefresh.

Add Cluster

To add your cluster, click the down arrow, and then click add cluster, select the project and cluster name. You can now deploy images!

Optional: Use an Alternative Cluster

To connect a non-GKE cluster we’ll need to add a token and certificate to Codefresh. Go to Account Settings (bottom left) > Integrations > Kubernetes > Configure > Add Provider > Custom Providers. Expand the dropdown and click Add Cluster.

Follow the instructions on how to generate the needed information and click Save. Your cluster now appears under the Kubernetes tab. 

Deploy Static Image to Kubernetes

Now for the fun part! Codefresh provides an easily modifiable boilerplate that takes care of the heavy lifting of configuring Kubernetes for your application.

1. Click on the Kubernetes tab: this shows a list of namespaces.

Think of namespaces as acting a bit like VLANs on a Kubernetes cluster. Each namespace can contain all the services that need to talk to each other on a Kubernetes cluster. For now, we’ll just work off the default namespace (the easy way!).

2. Click Add Service and fill in the details.

You can use the demo application I mentioned earlier that has a Node.js frontend with a MongoDB.

Here’s the info we need to pass:

Cluster - This is the cluster we added earlier, our application will be deployed there.
Namespace - We’ll use default for our namespace but you can create and use a new one if you’d prefer. Namespaces are discrete units for grouping all the services associated with an application.
Service name - You can name the service whatever you like. Since we’re deploying Mongo, I’ll just name it mongo!
Expose port - We don’t need to expose the port outside of our cluster so we won’t check the box for now but we will specify a port where other containers can talk to this service. Mongo’s default port is ‘27017’.
Image - Mongo is a public image on Dockerhub, so I can reference it by name and tag, ‘mongo:latest’.
Internal Ports - This is the port the mongo application listens on, in this case it’s ‘27017’ again.

We can ignore the other options for now.

3. Scroll down and click Deploy.

Boom! You’ve just deployed this image to Kubernetes. You can see by clicking on the status that the service, deployment, replicas, and pods are all configured and running. If you click Edit > Advanced, you can see and edit all the raw YAML files associated with this application, or copy them and put them into your repository for use on any cluster. 

Build and Deploy an Image

To get the rest of our demo application up and running we need to build and deploy the Node.js portion of the application. To do that we’ll need to add our repository to Codefresh.

1. Click on Repositories > Add Repository, then copy and paste the demochat repo url (or use your own repo).

We have the option to use a dockerfile, or to use a template if we need help creating a dockerfile. In this case, the demochat repo already has a dockerfile so we’ll select that. Click through the next few screens until the image builds.

Once the build is finished the image is automatically saved inside of the Codefresh docker registry. You can also add any other registry to your account and use that instead.

To deploy the image we’ll need
  • a pull secret
  • the image name and registry
  • the ports that will be used

Creating the Pull Secret

The pull secret is a token that the Kubernetes cluster can use to access a private Docker registry. To create one, we’ll need to generate the token and save it to Codefresh.

1. Click on User Settings (bottom left) and generate a new token.

2. Copy the token to your clipboard.

3. Go to Account Settings > Integrations > Docker Registry > Add Registry and select Codefresh Registry. Paste in your token and enter your username (entry is case sensitive). Your username must match your name displayed at the bottom left of the screen.

4. Test and save it.

We’ll now be able to create our secret later on when we deploy our image.

Get the image name

1. Click on Images and open the image you just built. Under Comment you’ll see the image name starting with

2. Copy the image name; we’ll need to paste it in later.

Deploy the private image to Kubernetes

We’re now ready to deploy the image we built.

1. Go to the Kubernetes page and, like we did with mongo, click Add Service and fill out the page. Make sure to select the same namespace you used to deploy mongo earlier. 

Now let’s expose the port so we can access this application. This provisions an IP address and automatically configures ingress.

2. Click Deploy: your application will be up and running within a few seconds! The IP address may take longer to provision depending on your cluster location.

From this view you can scale the replicas, see application status, and similar tasks.

3. Click on the IP address to view the running application.

At this point you should have your entire application up and running! Not so bad huh? Now to automate deployment!

Automate Deployment to Kubernetes

Every time we make a change to our application, we want to build a new image and deploy it to our cluster. We’ve already set up automated builds, but to automate deployment:

1. Click on Repositories (top left).

2. Click on the pipeline for the demochat repo (the gear icon).

3. It’s a good idea to run some tests before deploying. Under Build and Unit Test, add npm test for the unit test script.

4. Click Deploy Script and select Kubernetes (Beta). Enter the information for the service you’ve already deployed.

You can see the option to use a deployment file from your repo, or to use the deployment file that you just generated.

5. Click Save.

You’re done with deployment automation! Now whenever a change is made, the image will build, test, and deploy. 


We want to make it easy for every team, not just big enterprise teams, to adopt Kubernetes while preserving all of Kubernetes’ power and flexibility. At any point on the Kubernetes service screen you can switch to YAML to view all of the YAMLfiles generated by the configuration you performed in this walkthrough. You can tweak the file content, copy and paste them into local files, etc.

This walkthrough gives everyone a solid base to start with. When you’re ready, you can tweak the entities directly to specify the exact configuration you’d like.

We’d love your feedback! Please share with us on Twitter, or reach out directly.


Do you have a video to walk me through this? You bet.

Does this work with Helm Charts? Yes! We’re currently piloting Helm Charts with a limited set of users. Ping us if you’d like to try it early.

Does this work with any Kubernetes cluster? It should work with any Kubernetes cluster and is tested for Kubernetes 1.5 forward.

Can I deploy Codefresh in my own data center? Sure, Codefresh is built on top of Kubernetes using Helm Charts. Codefresh cloud is free for open source, and 200 builds/mo. Codefresh on prem is currently for enterprise users only.

Won’t the database be wiped every time we update?
Yes, in this case we skipped creating a persistent volume. It’s a bit more work to get the persistent volume configured, if you’d like, feel free to reach out and we’re happy to help!